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INTRODUCTION

Many future NASA missions would utilize significantly large and
flexible spacecrafts and would require very stringent pointing and
vibration suppression requirements. The active controller that can
achieve these objectives will have to be designed with very accurate
knowledge of the dynamic behavior of the spacecraft to ensure per-
formance robustness to a variety of disturbances and uncertainties.

In the past few years, several design approaches were proposed
for vibration control during and after slewing maneuvers. NASA
Langley Research Center initiated the Spacecraft Control Laboratory
Experiment (SCOLE) program [1] to promote direct comparison and
realistic test of various control design techniques against a common
laboratory article. The article was intended to resemble a large
space antenna attached to the space shuttle orbiter by a long
flexible mast.

The primary control objective of SCOLE is to direct the RF line-
of-sight (LOS) of the antenna-like configuration towards a fixed
target under conditions of minimum time and limited control
authority.

This problem of directing the LOS of antenna -like configuration
is studied as being composed of two-phase control problem during the
current research period. The two phases are namely, the slew
maneuver control of rigidized-body of SCOLE configuration and the
vibration suppression of flexible antenna. This formulation allows
the design of control systems using a decentralized control scheme
in which the dynamics of the two phases of control problem are

viewed as two subsystems with some interaction. The residual



vibration suppression of the flexible antenna at the end of the slew

maneuver is viewed as the second phase of the control problemn.

BRIEF SUMMARY OF MAJOR ACCOMPLISHMENTS

(a) Decentralized Slew Maneuver of SCOLE

During the current research period, the basic software for the
decentralized slew maneuver control of SCOLE model was completed.
The software was based on an algorithm of Hierarchical Optimal
control formulation in which the SCOLE model is viewed to be a
large-scale dynamical system composed of interconnected subsystems.
It was deduced that the system could naturally be decomposed along
the lines of dynamics of rigid part and those of flexible antenna.
Thus the set of uncoupled subsystems was generated together with
their coupling relations. The performance index to be minimized was
written in terms of the two subsystems and the subsystems were
further formulated individually in terms of two-point boundary value
problems. The necessary conditions for the individual subsystems
were developed in terms of nonlinear differential equations for
optimal control schemes.

(b) Quasilinearization of Subsystems:

The two-point boundary value problem of each subsystem was solved
by the method of quasilinearization. The process of guasilineariza-
tion for each subsystem involved the linearization of the nonlinear
system equations and utilizing the method of complementary
functions. An iterative search was incorporated in the algorithm to
get the final set of equations which satisfy the split boundary

conditions.



The complete control system design was developed at a second-
level in terms of a coordinating algorithm to optimize the overall
state trajectory.

The development of the software to design an optimal state
feedback control system for each subsystem allows specifications of
arbitrary large-angle nonlinear slew maneuvers. Computer simula-
tions of second-level trajectory optimizations were obtained and are
being analyzed for determining global optimal solutions.

(c) Shooting Method

The two-point boundary value problem for each subsystem is also
being solved using shooting method instead of quasilinearization
method to compare the solutions in terms of numerical convergence.

(d) Presentations and Publications

A detailed technical report based on Slew Maneuver Control has
been prepared for publication as NASA Contractor Report. A
presentation entitled, "Decentralized Slew Maneuver Control and
Vibration Suppression of Large Flexible Spacecrafts," was presented
at the Workshop on Computational Techniques in Identification and
control of Flexible Flight Structures, Lake Arrowhead, California,
November, 1989. This paper is also to be published in the
proceedings. A second paper entitled, "Slew Maneuvers of lLarge
Flexible Spacecrafts" is to be presented and published at the 1990
American Control Conference in May 1989.

A chapter based on collective work of previous years is to be
published in a book entitled, "Modelling and Control of Large Space
Structures: The SCOLE Experience" to be edited by A. V. Balakrishnan

and L. Taylor. This is included in the appendix.
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SLEW MANEUVER DYNAMICS AND CONTROL OF
SPACECRAFT CONTRO%. LAEO)RATORY EXPERIMENT
SCOLE

Y. P. Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte
Charlotte, NC 28223

ABSTRACT

In this article, the dynamics and control of slewing maneuvers of NASA
Spacecraft COntrol Laboratory Experiment (SCOLE) are analyzed. The control
problem of slewing maneuvers of SCOLE is formulated in terms of an arbitrary
maneuver about any given axis. The control system is developed for the combined
problem of rigid-body slew maneuver and vibration suppression of the flexible
appendage. The control problem formulation incorporates the nonlinear dynamical
equations derived previously in a report [1] and is expressed in terms of a two-
point boundary value problem utilizing a quadratic type of performance index.

The two-point boundary value problem is solved as a hierarchical control
problem with the overall system being split in terms of two subsystems, namely
the slewing of the entire assembly and the vibration suppression of the fexible
antenna. The coupling variables between the two dynamical subsystems are
identified and these two subsystems for control purposes are treated independently
in parallel at the first level. Then the state-space trajectory of the combined prob-
lem is optimized at the second level.

This work was supported by NASA grant NAG-1-535.



1. INTROD ION

The primary control objective of the Spacecraft Control Laboratory Experi-
ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-like
configuration towards a fixed target under the conditions of minimum time and
limited control authority [2]. This problem of directing the LOS of antenna- like
configuration involves both the slewing maneuver of the entire assembly and the
vibration suppression of the flexible antenna-like beam. The study of ordinary
rigid-body slew maneuvers has received considerable attention in the literature
[3,4] due to the fact that any arbitrary large-angle slew maneuver involves
kinematic nonlinearities. This is further complicated in the case of SCOLE by vir-
tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of
arbitrary large-angle slew maneuvers of SCOLE model were derived previously by
the author in a report [1] as a set of coupled equations with the rigid-body motions
including the nonlinear kinematics and the vibratory equations of the flexible
appendage. These nonlinear and coupled dynamical equations are used in this arti-
cle to study the slew maneuver control in terms of a hierarchical feedback control

scheme.

The control problem of slewing maneuvers of this large flexible spacecraft is
developed by using the two-point boundary value problem in terms of the rigid-
body slewing and the vibration suppression of the flexible appendage as two
separate dynamical subsystems. A decentralized optimal control scheme is utilized
in order to solve individual boundary-value problem for each of the two subsys-
tems by defining their state variable models and incorporating the coupling vari-
ables between the two subsystems in these models. Also, the boundary conditions
of the overall system are reworked in terms of boundary conditions of each sub-
system. A quadratic performance index is utilized for the overall system and is

subsequently expressed in terms of a sum of two individual performance indices of



the subsystems.

The basic algorithm for obtaining an optimal closed-loop state feedback
scheme involves using a trajectory in terms of a vector of Lagrange multipliers as
an initial guess at level two. This is used at level one in quasilinearization applica-

tion.

The two-point boundary value problem for each subsystem is solved at level
one by using a quasilinearization technique as a trajectory optimization problem. In
the quasilinearization procedure, starting from an initial guessed state trajectory,
successive linearizations are performed of state equations in such a way that the
final solution of the state trajectory is within an acceptable degree subject to the
boundary conditions. The state vector definition at this level is an augmented state

vector which includes both system states and costates.

These optimum solutions of the subsystem trajectories are utilized at level
two to yield the updated trajectory of the vector of Lagrange multipliers of the
overall system to be used for quasilinearization process at level one. The basic
steps of the algorithm are repeated to optimize this second level trajectory with

respect to a prespecified error criterion to obtain an optimal feedback law.



2. LIST OF SYMBOLS

a Vector to the point of force application on the beam
B Damping matrix
F,(z)  Force applied at the reflector mass center

G,(t) Moment applied about the orbiter mass center

I, Equivalent Mass moment of inertia of total assembly -
I, Mass moment of inertia matrix of the reflector
J Functional used for two-point boundary value problem

The stiff ness matrix

L The Length of the beam

M Angular velocity vector transformation

M,y Effective moment applied at the reflector c.g.

N The total number of subsystems

Q The generalized force vector

q; Generalized coordinates

r Position vector from the orbiter mass center to the point of
attachment

Tx X co-ordinate of the reflector mass center in the body-fixed
frame

Ty y co-ordinate of the reflector mass center in the body-fixed
frame

u Control vector of i th system

X, State vector of i th system

Z Vector of interconnecting variables

Y Unit vector representing the axis of rotation during the
slew maneuver

by i th Eigenfunction corresponding to u,

by i th Eigenfunction corresponding to u,
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Dy i th Eigenfunction corresponding to u,

'R The attitude of the orbiter in the inertial frame

'3 Slew Angle

[ The angular velocity of the orbiter in the inertial
frame

0 The angular velocity of the reflector in the inertial
frame

€ Vector of Euler parameters

8 (z—z;) Direc delta function
¢ Dual functional for two-point boundary value problem

A Vector of Lagrange multipliers



. ANALYTI
Slew Maneuver Specification and Control Varijables

The analytics for the dynamics of SCOLE developed in reference [1] are used

to derive the control laws for an arbitrary slew maneuver. It is assumed that the

slew maneuver is performed by applying moments on the rigid shuttle and the

vibration suppression is achieved by means of forces on the flexible antenna and

the reflector. The slew maneuver is considered to be an arbitrary maneuver about

any given axis [1].

The slew maneuver is defined in terms of 7y, the axis about which the slew

maneuver is performed. If ¢ is the slew angle and @ is the angular velocity of the

orbiter in the inertial frame, then the four Euler parameters can be defined as

= yisind
€; = y;Sin )
€= yzsin-g-
€3 = YsSing
= cos&
€4 cos »

(1)

The four Euler parameters can be related to the angular velocity components

of the rigid assembly as

3
€

€&

&

€1 €4
€ €3
€3 —€y
€4 —€

—€3 €3
€ —€
€1 €4

—€; —€3

0
Wy
(2)

Wy °

w3

The slewing maneuver can be given in terms of the following equations [1]

Lo+ A =G )+N (e (3)
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Ao+ A + B¢ + Kg=Q() (4)
where,

G (z) is the net moment applied about the mass center of the orbiter and is

given by the following equation (figs. 1 & 2)

G)=G, )+ ( +alxE, . (5)

Also, Q (¢ ) represents the generalized force vector which is given by the following

equation

( Qi‘n(t )+ ijl(t )+ Qx, + Q)'l + Q‘J’n

1 M3

1

.

( Q/'Iz(t )+ Qj)’z(t D QI: + QY: + Q‘J’z

et

-

Q)= - (6)

Z (ij,(t)+ ij,([ )) + Qxi + Qyi + Q\bi

Jj=1

where, the generalized force components are given as

L
Qjz, = fij (z,2)8(z~z; ), (2 )dz (7)

0

L
Qpy, = [ Fiy(z.238(z =2,y (2 )az (8)

0

and

Qj¢‘(t)=0 . (9)

Here, F;,(z ) is the x component of the concentrated force applied at location j

on the flexible antenna and F, is the y component of that force.



Also,

Qxi (Z ) = FZI (t )¢xi (L )
Q)= F,,(t ), (L) (10)

Qui) =My, (L) .
Here, F , is the force applied at the reflector C. G.
Thus,

M‘p(t)=F2xry+F2yrx+M2¢, (11)

The location of reflector C. G. is given by coordinates (r, Ty) and My,
represents the external moment applied at the refector C. G. Also, the nonlineari-
ties IV, can be expressed in terms of pure rigid body kinematic nonlinearity and

the nonlinear coupling term between the rigid-body modes and the fexible modes.

N,=A,(wf) +A;(0b)g (12)

The details of this term /N, are included in appendix A and the equation (12)
can be further simplified in terms of Euler parameters by relationships developed

in Appendix B as

No=A¢(we) +A;(weld (13)
where ¢ is the Euler vector comprising all four Euler parameters.

From equations (3) and (4) and by defining A =—A,7 I,"' A, + A, , the
following equations are obtained
AATIBG + A,ATIKg + AL,ATIATT T 4 151G (@)

o=7"

N (14)

+ {AZA‘IAZTIO'I-i-I_,
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d=—A"'B§g —A'Kg —ATIAI,7IG() + ATIALT I, IN (w0

+A°IQ (@) - (15)

It is assumed that control forces applied for vibration suppression has negligi-
ble effect on rotational maneuver of the spacecraft in developing equations (14)

and (15). Also, I ; represents 3x3 identity matrix in these equations.

Subsystems and State Variable Models

The two dynamical subsystems considered for decentralized control are the
dynamics of the slewing of the rigidized SCOLE assembly and the vibration
dynamics of the flexible antenna. These subsystems are represented by subscripts I

and II respectively for subsequent analysis.

The following are the definitions of state variables and control variables for

subsystem 1.
xrpAes x;plhen X3l e X4l €y
x1s Aoy X7 Ay X717 A3
x18 Gy x79AGa x510AGs;
uzlééli ulzééz; Uzséés .

The interconnecting variables from the second subsystem to reflect the cou-

pling between the subsystems are defined as

ziyAxpy zraAxpry zr3Axns ZraAxpe 215 AG;
216 A0 5 27740 ;
273 A0 5 27940 ;

F4 81 éO.
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The following state equations are obtained for subsystem I using these

definitions
*n xI1
X12 X2
X13 Xr3 ik
x.14 Oy D i 0 X714 0010 “r2
- = et | Bl —+ - +--Hups
e o' o'm |||+ 01 B, By|zs
) = + I By Billz
X16 R N B XI6 _+_Z.I._i i
. | I x | | 212
% 17 - -
T 0, 0, O ||--- I1 01 0 ||z
P Xrs I3
18 Zr4
. X
10 19
. Xrio
X110
0
+ |HN, (x71,%72,X13,X14:X15:X16:X17 ) (16)
0

Here, H =1, 1|A,A7ATI,7V + 1,5,

B,=1,"14,A7K ,

B;=1,"1A,A"'B,

Xra —Xr3 X12
Xrs Xra —X11
—Xr3 X111 X4

—Xry —Xy2 —X13

For the seocond subsystem which is the flexible appendage of the entire system,
the first two flexible modes are considered and the corresponding state variables

and control variables are defined as
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X1 Ady X2l qa
X3 XpaAda

Ui AQy upa AQa

As in the previous case, the coupling between the two subsystems is derived

in terms of the following interconnecting variables from the first subsystem.

ZpyAxry ZpaAxpy Zppalxps;

Zira Axras
ZnsAxrss Zyre Axres Zprr AXpy
Zip7Axre; Zpro Axpes Zrrio Axryo-

The following are the state equations of this subsystem.

. u
X111 X1 ' ok
X112 0 ! 1 X2 0 1 0 b
] R DS A |l P DO SR | et
x | XJr3
I3 -1 —1 -1 | -1, Ty -1
. A K1 —-A B A —A Az Io 2119
Xir4 114

21110

0
+ |- ===~ N z111.211 2211 3,211 0211 5211 6:2117) (17)
—A"14,71,7!

timal Control Problem

A general problem for the optimal control of interconnected dynamical sys-

tems like large flexible spacecrafts can be formulated as

Minimize J (x;42 ) i=12,..,N (18)
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where x; is the n, dimensional state vector of the ith subsystem, y; is the
corresponding m; dimensional control vector and z; is the r; dimensional vector of
interconnection inputs from the other subsystem. The integer N represents the

total number of subsystems and the scalar functional J is defined by

N b
J=32P (uG )+ [ 1L, [&(z)&-(z),&(z) dt (19)
i=1 2,

where L; |x;(z ) (2)z, (¢ )] is the performance index at time t for i = 1,2,..,N

subsystems. The functional J defined in equation (19) is to be minimized subject to

the constraints which define the subsystem dynamics, i.e.

(20)
x@)=2x, , i =12..N
Also, the minimum of J must satisfy the interconnection relationship
N L]
2 G (xeg )=0. 21D
i=1

Th en-1 Hierarchical Control

Using the method of Goal Coordination or infeasible method [15,20], we con-
sider another problem which is obtained by maximizing the dual function & A )

with respect toA(r) (7, <t <, ), where

& A\ ) = Min lj(Lg,g_.L) ’ (22)

PArvA
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subject to constraints in equations (20) and (21). Here

X U, £
x=1. u=1. z=1. (23)

»

EIY Uy ZN

Also, A in equation (22) is a vector of Lagrange multipliers which is given as

A
A= . (24)

Ax

4 t
- N / ’ .
T=Z P (ub, )+ [ Li(nwazida + [ NG (xzt)a | (25)
i=1 , Z,
j=12,..N
Rewriting this functional 7 as
- N
J =27
i=1

N b
- p,.(&(t,))+f[1.i (manzt )+ NG (x ozt )|al 26
i=1 Z,

where,

ty
Jo=Plal )+ [ L (nazd 407G (xzt) | (21)
L

and where AT G,"(x; z;,¢ ) has been refactored into the form A7 G,( x;.z;.7 ), i.e.
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into a form separable in the index i.

Thus,

. N
J=7J+ [A'YG: (x.2, )dt (28)
=1
Then by the fundamental theorem of strong Lagrange duality [22]

min J =max ®(A), i=12,..N. (29)

y N

Thus an alternative way of optimizing J is to maximize ® (A ) .

From equation (26), for a given A (¢ ), 7, €z <t; , the functional 7 is

separable into N independent minimization problems, the ith of which is given by

ty

Min =P (x () + [|L (e +0MG () [a GO
ta

X i oZi

subject to

(31)

This leads to a two-level optimization structure where on the first level, for
given A, the N independent minimization problems described in equations (30) and
(31) are solved and on the second level, the A () (7, <t <t, ) trajectory is
improved by an optimization scheme like the steepest ascent method, i.e. from

iteration j to j +1



- 15 -

A@Y*M =AY +o/ +2/ (1) 1, <t <ty (32)
where
, N
d'=v9dAt)= 3G (xz), (33)
i=1

V@ (A is the gradient of ® (M), o; >0 is the step length and d/ is the steepest
ascent search direction. At the optimum d/ — 0 and the appropriate Lagrange mul-

tipier, A , is the optimum one.

The development of this algorithm depends on the assertion Max ™ A) =
min J and this may not be valid for all nonlinear systems. Consequently, lineari-
zation of §; , and linearized equations for f; may be required for constraints to be
convex and convexity of the constraints is necessary to prove this assertion.
Nevertheless, the method is attractive from the standpoint of simplicity and that
the dual function is concave for this nonlinear case. This ensures that if the duality

assertion is valid, the optimum obtained is the Global Optimum.

On the first level, since equation (30) is to be minimized subject to equation
(31), the necessary conditions lead to a two point boundary value problem from
which an open loop optimum control could be calculated. However, it is desirable
to calculate a closed loop control and for this the quasilinearization approach can
be utilized at level one for all subsystems. Thus an iterative scheme can be set up
whereby an initial trajectory of A ()" , 7, <t <t, is guessed at level two and
provided to level one. At level one the two-point boundary value problems of the
subsystems are solved by quasilinearization. The state and control trajectories of
all the subsystems obtained at level one are sent to level two. The test for
optimality based on equation (33) is conducted at level two and if this is not

satisfied, equation (32) is used to obtain the new A (¢ ) for the next iteration.

ubsystem Cl L ntroll
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The closed loop controllers are obtained at the first level by solving the two-
point boundary value problems of the subsystems utilizing the quasilinearization
procedure. As noted in equations (30) and (31), the first level problem for the ith

subsystem is

Forgiven Mz ) ,1, St St/ ,

t
min P, l&(ff)]'*‘j‘lLi(_{ityJ;Z_i )+ MG (x.2) |ar (30)
1,

Xy o2y

subject to

(31)
x (1, )=1x,
For this problem, the Hamiltonian H; can be written as
H=L (xuz)+NG (x,z)+07f (xy 2 ) . (34)
For a given A, the state and costate equations become
5L l)=f,(x;¢2 ) (35)
. 8H, oL, 8G:7 . | oL”
tl)l=-—=- + A+ 7, (36)
u 0x; 0x; 0x; 0x;
with
oy 0z

It is assumed here that using the equations (36) and (37), it is possible to

obtain the control y; and the interconnect variable vector z; which is an explicit
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function of n; and x;, i.e.

(38)
z;,=d, (x,m; )
and g

Using these relationships for x; and z; in equations (35) and (36), the following

equations are obtained

=g (xm), 1, St <1y (39)
ﬁi =-Qi (_{i»ﬂt )’ to <t <z/ (40)

with the boundary conditions

x, (1, )=2x, (41)

and from the transversality conditions

aPl-[;i(tf )l

(42)
0

¥, ( iy )=
Quasilinearization Procedure

The two-point boundary value problem of ith subsystem is given by equa-
tions (39) and (40) subject to boundary conditions of equations (41) and (42).

This problem is solved by quasilinearization technique as follows.

Xy

Defining y = n;

’

equations (39) and (40) can be rewritten as

PG)=E|p )| - (43)
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In the quasilinearization procedure, starting from an initial guessed trajectory
fory =y’ (¢), successive linearizations are performed of equation (43) in such a
way that the final linear equation for y solves equation (43) to an acceptable
degree subject to boundary conditions (41) and (42) which could be expressed in a

more general form as

Y () A, =87 (44)

(1, YA, =57 (45)
where A, , A, are2n x n matrices.

The linearized equation of (43) about a trajectory y =y’ (¢ ) is obtained by

Taylor series expansion as

y=F()+7(y)(y—-y)+¥ (46)

where J (y/) is the Jacobian of E[_y_( t )], 1, £t K1y, aty’ and ¥represents the
contribution of the higher order terms. Neglecting these higher order terms, the fol-

lowing linear equation is obtained

y=E()+7()(x-y") . (47)

If the initial guessed trajectory y’/ while satisfying equations (44),(45) and
(47) does not satisfy equation (43), then an iterative search can be utilized to
obtain a better linearizing trajectory by various methods discussed in references 19,
20, and 21. This iterative search is given by noting that equation (47) can be writ-
ten by expanding individual equations (39) and (40) by Taylor series expansion
about a known trajectory x/(t ), n/(t),7 € [7,,2;], and retaining terms of up to

first order. The linearized reduced differential equations are
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0 =g lx LY, (I)]

x/ @)/ @))

x. G+ (t)—x/ (t)]

o/ (@)) “n}"“) (t)—n/ )] (48)

nu*”—b[xjﬁlajﬁ)] 0/ ()

I"‘(Hl) () —x/ (t)]

—-1

+

%%uﬂumun[¢HWn-ﬂuﬂ (49)

These differential equations can be rewritten as

290 = 4,294 @) + A, )0, 900 ) +e,/ (@) (50)

w9 = 4,005,900 ) + Ay, )IL(HI)(’)"' () (51

or, in the partitioned matrix form,

U@ [An() AL@) <Mb) e/ (@)
ﬁi ¢ +1)(t ) 21(t ) A zz(t ) (j +1)(I ) j (T ) (52)
where the matrices
1(t)_A_—gz—, Alz(t)A—g%,
b b
l(z)_A_-g—:— , A,z(z)Aé£ :
and
(53)

izj A—A,( ).x_ij(t)_Azz(t )Iuj(t)'f'_éi

are evaluated at x;,7/ (z ), ;7 (¢ ) and hence are known functions of time.
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The method of complementary functions [24] can be incorporated with this

linearization of the differential equations in the implementation of iterative search.

An initial guess, x;°, n,°,¢ €[¢t,,2, ], is used to evaluate matrices in equa-
tions (53) at the beginning of the first iteration. In the next step, n sets of solu-

tions to the 2n homogenéous differential equations

it(jﬂ) =A,( )x, () + A, ), G+D(z) (54)

29 = A5 ) Y00 ) + Ayl )n, Y4 00) (55)

are generated by numerical integration. For (j +1) st iteration, these solutions are
denoted by x, !, n,fY; x, 72, n,H2% . ... x0", ;7" . The boundary conditions

used in generating these solutions are

T

b

£H)=0, ¥ )= |1oo .0

xH%(t,)=0, _m-”z(to)=[010...0]T,

(56)

" (,)=0, 2" ()= [000 L1

Next, one particular solution at (j+1) denoted by x;? , m;?, is generated by
numerically integrating equation (52) from z,, to 7, , using the boundary condi-
tions x,7(z,) = x,, n;? (¢z,) = 0. Then, the complete solution of equation (52) can

be obtained by using the principle of superposition and is of the form

LY@ =, Hla) + e, 20 ) + e + @)+ x,2@)  (57)

29 ) =m0 ) + cn ) + e @) + 0, () (58)

where the values of ¢; , ¢5, ...., ¢, which make m("'*‘(tf):nf are to be

determined. To find these valuesof ¢, , ¢, ....,C,, Welet? =1, in equation
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(58) and write it as

-1
n, = [IIJHI(I)') llin(tf)...-lliHn(tf)] £+Ih‘p(t/ ). (59)
Here,c AlcycCc3....Cp ]T is unknown. Solving for ¢ yields
-1
= Illil-“(t )n (tf).-..mﬂn(t/)] [12_/ —n;? ] (60)
1

It is important to note that the indicated matrix inversion in equation (60)
has to exist in order to solve for ¢. Substituting this solution of ¢ into equations
(57) and (58) gives the (j +1) st trajectory. This completes one iteration of the
quasilinearization algorithm and this trajectory can be further utilized to begin
another iteration, if required. Generally, the iterative scheme is terminated by
comparing the j th and j +1 st trajectories by calculating the norm shown in the
following equation and comparing it with a preselected termination constatnt, p.

x (j+1) lij

ﬂ.ij <P (61)

n; %j +1)}
los ntrol
In order to obtain the closed loop control, the solution of the linearized equa-

tion (47) can be written as

F)=-Jy @) |dr (62)

b
2(t)=0Ct 2 )+ [ 6 G, 1)
t

where ¢ is the state transition matrix of the system in equation (47). Rewriting
equation (62) in terms of solutions of states and costates and replacing the integral

terms by p, (z)
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x; (1) b (1,1 b1 (p )] |2 @) Dip (@)
EVNCOD] il PN R I S (OS] I PR eD ] Il P CD) (63)
From equations (42) and (63)
()= om0 4 60 () my E) + iy () . (64)
n; \i, aii—u/s_i/» 22 \y, 1)1, 2y A\ ).
Thus,
P
n ()= o5 ‘@'—l"%ﬂi (t)""Piz(t)’
8,
P
=¢22-1 %:—Eiz(t)‘—d)zz—l[d’n(t)] . (65)

It is important to note here that ¢,, ! always exists since it is a principal
minor of the state transition matrix.

Substituting equation (65) into equation (38)

y =g (x;,1) . (66)
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APPENDIX A

The nonlinear term /N, is given in terms of the attitude of the orbiter, §, and

angular velocity vector transformation matrix, M, as

where

and

10M _

TM—
© 00,

10M

cosG 2

oM~
- 89s

OSG 2

[(w,posG 5} (—w;cos6,) O ] .

o M- -1.0M
89,
TM I_L_
99 2
TM—I_a_
003

sinf 5
0

o=MT

TM—IM =
© 001

—w,sinf ;sin?03)  (w,cosf ycos6 3—w,cosH ,5inb 3) ]

Since the transformation matrix, M ,

-M llog+ Azg'_] (A-1)

cosf ,cos0 3 —cos6 ,sinf 3 sinf ,

cosh 5 0 (A-2)

0 1
g (A-3)

[o 0 o] (A-4)

[(—wlsine ,€0520 3+w,sinf ,sinf scos6 ;)  (w;sinf ,sinb 3c0s6 ;

(A-5)

(A-6)

is a function of 6, and 6 ;, the time

derivative of M can be expressed by the chain rule as
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M = gﬁéz"‘ ggié:s . (A-7)

From equation (A-1)

(—sind ,cos0 308 , (sind ,sin 308, (cosh,)f,
-%"ié , = 0 0 0 (A-8)
0%2 0 0 0

(—cosf ;sinf 3)8 3 (—cosB ,cos03)05 O
ggié s= | (cosB)d, (—sinf,); 0] . (A-9)
: 0 0 0

Substituting these equations (A-8) and (A-9) in (A-7)

(_Sine 2C059 3)é 2+(_COS 6 ZSine 3)9. 3 (Sine zsme 3)é 2+(_C059 ZCOSG 3)é 3 (COSG 2)é 2

1= (cosf 306 5 (—sinf 3)6 5 0
0 0 0
(A-10)

From equation (A-3), this can also be expressed as

(—sinb ,cos0 3)(w,cosb ,sinf 5 (sin6 ,sin6 3)(w;cosH ,sinb 5
+,c050 5c080 3)+(—cos8 55100 3) +w,cos6 5c080 3)+(—cosb ,co0s0 3)
(—w,5inf ,cos0 3+w,sinf ,5inB 3  (—w,sinb ,c0s0 3+w,sinb ,sinb ;

+w;cosf ,) +w;cos6 ,)
o 0 0
~ ‘cosf, (cos 6 3)(—w,sinb ycosh 3 (—sinf ;)(—w,sinf 5cosH 3
+w,sinf ,5inf 3+w;zcosh ;) +w,sinf ;sinf 3+wscosh ;)
0 0
0] 0

0 0
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c0s0 (0, cos0 ;sinb 3+ w,cosh ,cos8 3)
(0]

OCOO0OO0OO0O0O0OCO0o

Also, M~ is given as

cosf 3 cosO ,sinf ; —sinf ,cosh 5

_1=

—sinf ; cosf ,cos8; sinf ,sinb ,

cosf ,
0 0 cosf ,

Thus, the nonlinear term N, can be rewritten as

No= A0 [Lotaxd]

‘Where the term A '3 is

0

A'(w8) =M1 QTM-I-SGM -M

2
wTM_IM
— 093

Ny=A3, 0+ A3(08)A0

= A4 08) + As(8)g

(A-11)

(A-12)

(A-13)

where A 4 depends on the rigid-body slewing and is nonlinear in terms of @ and 0.

The second term relates the coupling between the rigid-body slewing and the flexi-

ble modes.
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APPENDIX B
The transformation that relates the orientation angles § to Euler parameters €

is a nonlinear transformation. This transformation is developed for body-three
angles representation in this appendix and similar transformations can be derived
for other three representations, namely space-three angles, space-two angles, and

body-two angles.

(a) Forsinf, =1 :

If —% <6, <%, then

9,=sin"!|2(es¢e; + €2€4) | . (B-1)

If ( cos6 ,cos0,) 20, then

-2 (6263 - 6164

(B-2)
cos{sin [2( €36, + €3¢4) ”

6, =sin"!

If ( cosBcosf ;) <O, then

=2 (6263 — €1 €4 )

91 =7T- Sm_l (B-3)
cos[sin‘1 l2( €3€; + €264 ) ”
If ( cos@ ,cos0 3) 20, then
9, =sin"! —2(a6 =~ g6) (B-4)
cos[sin [2( €36 + €365 ) I]

If ( cosf 5cos@ 3) <0, then



=29

~2 (€16, — €3¢, )

63 =T - Sm-l (B—S)

cos[sin'l 2( e3¢; + €3¢ )

(b) For sinf,= %1, 6, is a constant. For sinf,=1, §,= —27-’- However, if

sinf, =—1, then 0, = —%. For this case, if ( sinf ;sin6 ;sinf 3 + cosf scos6, ) 20,

then

61 - sin'll.?( €7€3 + 6164) ] . (B—6)

If ( sinf ,sinb ,sinf 3 + cosh ;cos0; ) <O, then

6,= 1r—-sin_1[2( €263+ €1€4 ) ] . (B-7)

For this entire case, 63, =0.
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APPENDIX C

Numerical Data:

The analytics developed in reference [1] are utilized together with the basic
SCOLE data [2] and the three dimensional linear vibration analysis [25] to generate

the following numerical data.

0.036
r. = [-0.036
-0.379

1216640 —1.530307 175667.1
I, = |—31.66433 7082976 —52474.84
175690 —52503.9 7131493



0.45879E+2 0.3630SE-—1
0.36305E-1 0.6211E+2
—0.89042E—-1 0.11263E0
—0.14067E0 —0.1471E0
—0.1457E0 —0.5518E-1
0.1914E—1 0.19839E -1
0.84597E—-1 0.3935E-2
—0.6893E-2 -0.7165E-2
—0.4269E—-1 0.5969E-2
0.4204E-2 0.41227E-2

0.1914E—1 0.84597E-1
0.19839E—-1 0.3935E-2
0.7925E—-2 —0.8369E-1
-0.4278E—1 —0.76115E-1
-0.2570E—-1 -0.12912E0
0.23209E+5 0.10383E-1
0.10383E—1 O0.55561E+5
-0.2089E-2 —0.37286E-2
—0.3955E-2 —-0.3859E-—1
0.1227E-2  0.2397E-2

—0.2133821E0
0.3808921E +3
-0.1808478E +3
0.1423380E +3
-0.2416743E +2
—0.6802273E0
0.2784792E +2
0.7842818E +1
—0.2694455E +2
-0.9225328E —1
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—0.89042E -1
0.11263E0
0.32737E+2
—0.6392E -1
—0.14526E0
0.7925E -2
—0.8369E—1
—0.2829E -2
0.89767E—1
0.1866E —2

—0.6893E -2
—0.7165E -2
—0.2829E -2
0.1543E-1
0.9222FE -2
—0.2089E -2
—0.37286E -2
0.1342962E+8
0.1421E-2
—0.4427E-3

—0.3687057E +3
—0.3030935E +2
—0.1318596E +3
—0.1135851E+1
0.574383E +2
0.3104929E2
0.6651585E+2
—0.1930097E +2
—0.5544252E +2
0.1594045E +2

—0.14067E0  0.1457E0
—0.1471E0 —0.5518E-1
—0.6392E—-1 -—0.14526E0
0.2547E+3 0.1908E0
0.1908E0 0.8103E +3
—0.4278E—-1 —-0.2570E-—1
—0.76115E—-1 -0.12912E0
0.1543E—-1 0.9222E-2
0.2859E—1 0.4611E-1
—-0.9067E -2 ~0.5947E-2

—0.4269E —1
0.5969E -2
0.89767E -1
0.2859E -1
0.4611E~-1
—0.3955E -2
—0.3859E—1
0.1421E-2
0.2095672E +8

0.4204E -2
0.4127E -2
0.1866E —2
—0.9067E -2
—0.5947E -2
0.1227E -2
0.2397E -2
—0.4427E -3
—0.9108E -3

—0.9108E—3 0.8662547E+10

—0.7253901E -1
—0.8427658E —1
—0.125799E0
—0.2367351E—1
—0.9150328E -1
—0.3843062E ~1
0.596075E —1
—0.4363533E -2
—0.4200623E -1
—0.1626004E -1
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The stiffness matrix X is calculated using equation (57) and the mode shape
coefficients given in Table 1. This matrix is a diagonal matrix and is represented in

terms of the diagonal elements as

ki, = 0.2820217E0
ks = 0.3574692E0
k33 =0.2412807E 1
ka44=05285116E1
k5= 0.1588654E2
K = | k¢s=0.8573860E2
k77=0.1146118E3
kg5 =0.5686101E3
kg9 = 0.6254598E 3
K 10,10 = 0.2114612E 4

The damping matrix B used for this analysis is a diagonal matrix and for

damping ratio { = 0.003, it is calculated to be

by, = 0.9685964E —3
b, = 0.1088608E —2
by = 0.2834016E—2
by = 0.4256808E—2
bss=0.7387177E—2
B = |bge=0.1719014E—1
by, = 0.1984237E—1
bgs = 0.4421234E—1
bgo = 0.4633434E—1
b 1010 = 0.8527647E—1
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Figure 1- Position Vectors in Inertial Frame
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Figure 2- Vectors in Body-fixed Frame



